
Artificial Intelligence
Local Search
Paper Code: CS-401

Anupam Pattanayak1

Assistant Professor,
Department of Computer Science,

Raja N. L. Khan Women’s College (Autonomous),
Midnapore, West Bengal

May 5, 2020

1anupam.pk@gmail.com

ii

Contents

1 Local Search 1
1.1 Background . 1
1.2 Introduction . 2
1.3 Local Search & Optimization 3
1.4 Local Search: Example of 8-Queen Problem 4
1.5 Hill Climbing Algorithm . 5
1.6 Tabu Search . 6
1.7 Local Beam Search . 8

iii

iv CONTENTS

1

Local Search

So far, we have seen informed search and uninformed search techniques. In
this study material, we will discuss local search algorithms.

This study material has been prepared by consulting multiple books and
video lectures. These references include the book by Russel1, book by Cop-
pin2, and NPTEL Course lectures on An Introduction to Artificial Intelligence
by Prof. Mausam3 in SWAYAM platform of MHRD, Govt. of India.

1.1 Background
Let us briefly revisit whatever have been covered so far. Many computational
problems can be mapped as AI search problems. Search is a fundamental
approach in solving a new problem. In AI search techniques what we have
seen so far is that, there are huge number of states and actions. There is
a start state and one or more goal state(s). Our target was to find a path
from start state to goal state. We have seen search techniques which are
systematic. The uninformed search techniques such as DFS, BFS, and IDS
algorithms search blindly at all directions. Informed search techniques such
as A∗, IDA∗, Depth First B&B are guided search. Here, next node is chosen
for expansion on the basis of an evaluation function that estimates cost to
reach a goal state. Based on our present knowledge, to solve a new problem,
we model the given problem as a search problem. Then, we apply a search
algorithm either from uninformed search techniques or from informed search
techniques to explore the search space systematically to reach from start state
to a goal state and obtain the path from start state to goal state as solution

1Artificial Intelligence A Modern Approach by Russel and Norvig, PHI.
2Artificial Intelligence Illuminated by Ben Coppin, Jones and Bartlett Publishers
3https://swayam.gov.in/nd1_noc20_cs42/preview

1

2 1. LOCAL SEARCH

of the given problem. Local search technique is altogether a different way to
search.

1.2 Introduction
Till now, a solution of a given problem was a path from start state to a
goal state. For some problems, the path is not relevant. A solution is only
relevant for some class of problems such as 8-queen problem that you have
probably come across in algorithm paper. In local search, we search in the
solution space. Here, not the path, but state itself is a solution.

In 8-queen problem, we need to place 8 queens in an 8 × 8 board such
that no two queens attack each other: that is, there should not be two queens
in the same row or same column or same diagonal. The figure 1.1 shows a
solution to the 8-queen problem.

Q

Q

Q

Q

Q

Q

Q

Q

Figure 1.1: A Solution to 8-Queen Problem

In the previously seen approach, where we were searching in state space,
we would have formulated the 8-queen problem as shown below:

Our s t a r t s t a t e i s empty .
Each ac t i on i s to add one queen .
Goal t e s t i s that a l l queens p laced and no two queens attack

each other .

This approach is like finding shortest path to a goal. All goals are at
depth length n. Note that, for 8-queen problem solution, it does not matter
whether queen 1 is placed in first column or second column or any other

1.3. LOCAL SEARCH & OPTIMIZATION 3

column. We are only interested in obtaining the final state. This type of
problems are suitable for modelling as local search. In practice, solution is
often found faster using local search than informed search.

1.3 Local Search & Optimization

There is a close relation between local search and optimization. First, let us
revisit the concept of optimization problem that you have studied in under
graduate level in Operation Research topics such as LPP. Here, we will look at
the optimization problems in terms of search. Suppose, we are interested to
find the best path to the goal in search space. When mapped as optimization
problem, we can re-cast the problem as find the path which optimizes some
objective function. In optimization problem, we are given with an objective
function and a set of constraints. For local searches, we add a constraint as
given below:

optimization function ≤ C in minimization problem, or

optimization function ≥ C in maximization problem.
Here, we work with the version of optimization problem where variables

are discrete or integer. So, two conditions are to be met for applying local
search:
I. The given problem is an optimization problem,

II. The sloution is a state.

In local search, we only keep track of present state. That is, current state
is the single state we bother about, and we ignore keeping track of paths.
That is why local search is very memory efficient. It is capable of finding
reasonable solution in very large or even infinte state space. While we are in
a current state, we can move only to a neighboring state - that is, we search
in local neighborhood. So, given states and neighborhoods of the states, and
given an objective function that evaluates a state, local search algorithms
find a state that has optimum (maximum or minimum) value of objective
function.

In local search, every state is a solution - bad or good. A solution is
good where higher number of constraints are statisifed, and bad where lower
number of constraints are satisfied.

4 1. LOCAL SEARCH

1.4 Local Search: Example of 8-Queen Prob-
lem

Let us again visit the 8-queen problem from the local search view. The
figure 1.2 shows a solution to the 8-queen problem.

Q

Q

Q

Q

Q

Q

Q

Q

Figure 1.2: A Solution to 8-Queen Problem

We have to formulate this 8-queen problem as an optimization problem.
Here, a state in search space will be a solution. Can you guess, what will
be the objective function? It is the number of attacking pair of queens. We
have 8 queens. If we take any two queens at a time, there are total 8C2 = 28
possibility of choosing a pair of queens. So, what will be minimum number
of attacking pair of queens? This is 0 - which is required for our solution.
So, our objective function h : number of queens attacking each other. Now,
what will be a possible state space in 8-queen problem? It will be all possible
positions of queens in 8×8 board. Suppose So, we have 88 states in the state
space. Now, we need to define neighborhood function or successor function.
Here, a neighborhood state could be a state where positions of 7 queens
will be same as the current state, only one queen will be moved. A good
successor function keeps good balance between immediate neighborhood of
the current state and the legth of path to the solution. Defining a good
successor function is a skill that has to be learnt by AI people. Then we
need to define the heuristic function h (), or objective function that we want
to optimize. This we have already discussed: number of queens that are
attacking each other. We want to minimize this heuristic function.

1.5. HILL CLIMBING ALGORITHM 5

1.5 Hill Climbing Algorithm
As the name Hill Climbing suggests, it’s concept is associated with climbing
to the hill top. Following figure 1.3 shows a sample hill. When monuntaineers

Figure 1.3: A Hill

go for expeditions such as climbing the Mount Everest, how does one realize
if she has rached at the summit or peak of the Mount Everest? They keep a
GPS tracker or altitude meter that guides them in this regard. However, there
can be many other peaks with little bit smaller height in the surroundings of
summit which can mislead monuntaineers to believe that they have reached
at the peak in the absense of such GPS tracker.

Such things can also happen when we search for solution in the search
space, where there are many local optimums and one global maximum. While
doing the local search using hill climbing we may reach a local maximum,
and we believe we have reached at the global maximum.

In hill climbin algorithm, since an objective function is associated with
every state, so given a current state, all it’s neighborhoods are evaluated with
the objective function. If a neighborhood state is found with value higher
than the current state and it’s the maximum value amongst the neighbor-
hood, then this neighbor becomes the new current state. This is repeated. If
none of the neighbor has higher value than the current state then terminating
condition has been reached and the hill climbing algorithm returns the local
maximum and then terminates.

So, we can say that hill climbing algo. is the greedy local search. Current

6 1. LOCAL SEARCH

state may have many alternative for next state. Choose the next state which
seems the best. Following algorithm 1 gives the maximum version of Hill
Climbing algorithm.

Algorithm 1 Hill Climbing Algorithm: Max. Verion
function HillClimbing(problem)
Input: problem
Output: returns a state that is local maximum

local variables: current_node, neighbor_node

1. current_node ← MakeNode(InitialState(problem))

2. while(true)

3. neighbor_node ← SuccessorHighest(current) /* best neighbor
*/

4. if(Value(neighbor_node) ≤ Value(current_node))

5. return State(current_node)

6. current_node ← neighbor_node

7. end of while loop
end HillClimbing

In case multiple neighbors have the best value, then hill climbing algo-
rithm randomly chooses any succesor among those neighbors. It does not
look beyond the immediate neighbors. Hill climbing often gets stuck in local
maxima (or minima). Concept of local maximum and global maximum is
illustrated in the following figure 1.4 shows a sample hill.

In the graph whenever there is any plateau, or ridge, or foothill like those
are found in mountains or hills, the local search algorithm like hill climbing
will get stuck. However, if the initial state was near the global maximum,
then hill climbing can return the global maximum.

1.6 Tabu Search
In hill climbing if the search gets suck in a local optimum, there is no way to
come out of that. One solution is to take steps back from local optimum and

1.6. TABU SEARCH 7

state space

objective
function

global maximum

local maximum

local maximum

local maximum

Figure 1.4: A Hill

go down to reach at the bottom. Once the bottom is reached then the search
is resumed afresh with the hope that better solution will be visited. This
is continued. However, a limit on possible number of sideway moves to be
placed to prevent infinte looping. This is the concept of tabu search. In tabu
search we keep track of last node and this node is not repeated. Following is
the main features of the tabu search:

I. maintains a fixed length queue known as tabu list

II. add most recent current state to the queue and drop the oldest

III. prevents returning quickly to the same state

IV. never make it to the state that is currently tabu’ed

Following algorithm 2 gives the maximum version of Hill Climbing algo-
rithm.

If the size of tabu list increases, tabu search asymptotically becomes non-
redundant. That is, it would not visit the same state twice. In practice, tabu
list queue size of 100 or such improves the performance of tabu search over
hill climbing in many problems. If the tabu list size is extremely large or ∞
then tabu search essentially becomes a systematic search. In practice, a time
bound is also used to terminate a local search.

8 1. LOCAL SEARCH

Algorithm 2 Tabu Search Algorithm
function TabuSearch(problem)
Input: problem
Output: returns a state that is possibly global maximum

local variables: current_node, best_node

1. current_node ← Random(InitialState(problem))

2. best_node ← current_node

3. Tabu_List ← current_node

4. while(!Empty(Tabu_List))

5. current_node ← Non_Tabu_SuccessorHighest(current)

6. Tabu_List ← current_node

7. if(Value(current_node) ≤ Value(best_node))

8. best_node ← current_node

9. end of while loop

10. return State(current_node)
end TabuSearch

1.7 Local Beam Search

In local search techniques that we have seen up until now, the search main-
tains only one current state at any point of time. Can we think of an alter-
native approach where more than one current state is maintained? Suppose,
the search starts with k number of states. Look at the neighbors of these k
states. Then look at the k best states in next round. This is the idea of beam
search. Beam search keeps k successors out of many successors.

The idea behind beam search is that maintaining only one state in mem-
ory is an extreme reaction to the problem of excessive memory requirement
of uninformed or informed search. So, keep track of k states instead of just
one state in the search space. Next, find all the successors of these k states.
Accept the best successor as solution after this process is iterated over several

1.7. LOCAL BEAM SEARCH 9

times until a time bound is reached.
Here, search starts in parallel. But soon , the search converges to one or

two hills. So, the beam search loses diversity after quite a few rounds.

	Local Search
	Background
	Introduction
	Local Search & Optimization
	Local Search: Example of 8-Queen Problem
	Hill Climbing Algorithm
	Tabu Search
	Local Beam Search

